CS: Pod of Delight

Week 11: Git



Git



What i1s Git”?

Distributed version control tool

Keep track of changes

Synchronize changes across machines/server
Allows tor collaboration

Git is not github






Basic Git Commands

e ada
* stage a file/changes (or start tracking if wasn'’t tracked)
e git add test.txt

e commit
» store (some or all) staged changes in the .git database

* commits track: datetime, author, files changed, changes (diff), and a
commit message

¢ git commit test.tx -m “commit a single change”

e git commit -am “commit all changes”



Basic Git Commands

* push
 Push all your commits to a remote location
* pull

e Pull commits from a remote location



Basic Git Commands

* gstatus

e Tell you the status of stage, working dir, server, files
changed, etc...

o diff
* Use to see the changes between any two commits
o Qit diff

. git diff file.txt



Basic Git Commands

* |0Q
e See the history of all commits
* checkout

e switch to a different snapshot



Branches



Basic Branches

“alternate realities”
Allow you independently work on different things

You brach out from a common point, changes
aren't propagated

Used for collaboration, working on features,
backup, trying things

Easy to create, switch, and delete



Branchning

e Can branch and checkout branch with
e it checkout -lb mybranch

* Or independently create branch
e git branch my branch

e Can list all branches

* (it branch



Merging

 Merging is taking all changes in one branch and applying them to another
e git merge branch

* Will merge all (disjoint) changes from branch to your current branch

» Will create a merge commit, so histories are left untouched

e Can also use rebase, which will “replay” all commits on your local branch
without creating a merge commit

* This “rewrites” history by moving the branching point to the head of
branch you are rebasing from

e Qgit rebase branch



Branching lllustrated




Git Ideology: Branches

 Master: pristine, always works, ie: production

* Dev: practice for master, should still attempt to
work, but no heads roll if it doesn't

* Feature branches: each developer has a branch for
each feature



Git Ideology: Workflow

Developer Sandy wants to add a button

git checkout sandy@mystartup:~codebase // get the codebase

git checkout dev // work off the development branch

git checkout -b sandy_button // make her own branch

<work on code, add the button>

git checkout dev // go back to dev branch

git pull // pull any changes from the server

git checkout sandy_button // go back to her branch

git merge dev (or git rebase dev) //brings her feature branch back up to date

At this point she can submit it to QA, merge into dey, etc...



Git Remotes

Remote git databases

Allow multiple people to work on codebase

Github, gitlab, bitbucket, are all common examples
But you only need a filesystem!

VPN, RPI, cs machines, dropbox, gdrive



Starting a Git repo

e Starting from an existing
* Qit clone
e Starting a new one

e gitinit



Contributing to OSS

“Fork” their repo (not actually git feature)

Clone it

Make your changes

Create a pull request

* Essentially asking the original owner to merge your branch
* Code review, comments, back and forth

Pull request accepted, your code gets merged back upstream



Some other pros

Everyone has their own copy, no stepping on each
other’s shoes

Open source

Works without internet connection, everything is
local

Simple to use



Cons of Git

 Decentralized means no easy way to keep track of
progress unless pushed

 Requires everyone to have a full copy of codebase

e |t things go bad, they can go real bad






