
Git: Introduction

Content: Pato Lankenau
Graphics: git-scm.com, atlassian.com, rogerdudler.github.io

What is Git?

● Distributed version control tool (not file history)
● Made by Linus Torvalds

Staging

Basic Commands

1. Create a folder and change into it
2. git init

Creating local git repository

Git and files

• Git keeps track of files and changes within them
• Files that git knows about are known as tracked files

Adding files to git index (stage)

git add <filename>

1. Create a file, helloworld.py
2. git status
3. git add helloworld.py
4. Edit file (vim/nano/emacs/ed/gedit helloworld.py)
5. Insert print “Hello class” or print(“Hello class”) for python3
6. git status

Committing changes

• When you change files, git knows
• git status
• git commit <file> or git commit -a or git commit -m “commit message”
• git status
• Clean

Important Git File: .gitignore

• Filenames that match any of these rules are ignored by git
• UNLESS they’re already tracked
• Typical .gitignore

#Vim temp files

*.swp

#Compiled source

*.pyc

*.class

*.o

*.so

#OS generated files

.DS_Store

.DS_Store?

._*

.Spotlight-V100

.Trashes

Adding a gitignore file

1. Create a file named .gitignore
2. Add *.pyc
3. Save
4. git status
5. git add .gitignore
6. git commit -am “added gitignore”
7. Compiled python files now ignored forever!

Making more changes

• Edit helloworld.py
• Change it to print “hello world”

• git status
• git diff <commit> <filename> or git diff

Undoing changes

• Undoing an unstaged modification:
• git checkout <commit> -- <filename> or git checkout -- <filename>

• Undoing a staged modification
• git reset HEAD <filename>

• Undoing to everything since last commit
• git reset --hard

• Undo the change we made
• git checkout -- helloworld.py
• git status

Branching

• master branch, other branches

Creating and checking out a new branch

1. git checkout -b mysuperawesomebranchthatfixesallthebugs

Listing branches

git branch

or

git branch -v

Branches are independent

• Work on a branch always

Keeping your branch updated

• If you took too long, or big changes in codebase happened, time to update

Keeping your branch updated: rebase

• git rebase master
• Moves the tail of your branch to the head of master
• Bring the base of your branch up to date
• Does not create a commit

Keeping your branch updated: merge

• Creates a commit to bring your tail up to date
• git checkout branch
• git merge master

Ideology Rant: Branch Eutopia

• Master branch is pure goodness
• Dev branch is impure goodness
• Each feature/atomic change is it’s own branch
• Work on your branch, when you think (emphasis on think) you’re done
• QA your branch, and fix your mistakes (because you made some)
• Once you’re done: merge to dev
• Make sure that it works fine with the codebase on dev (days or weeks)
• Merge to master

Remotes

• Remote, usually widely accessible (LAN/WAN) git repositories
• Allow multiple people to collaborate on work
• Centralized
• Bitbucket and github are two common examples
• But anyone can make git servers

Pushing

git push <where> <branch>

• git push origin master

Pulling

• git pull <where>
• Used to get the latest changes

Cloning

• git clone <where>
• Used to get a local copy of a remote repository

Other niceties

• Using git to deploy websites or products
• Using git to tag software releases

Other negativities

• Decentralized means no easy way to keep track of progress until push
• Requires everyone to have a full copy of the codebase
• “If things go screwy, you’re screwed”

